分数傅立叶变换在图像处理中应用的研究展望
邹裕越;谭立英;
摘要(Abstract):
在综述国外及国内相关文献的基础上,总结分数傅立叶变换在各个领域的广泛应用,对分数傅立叶变换在图像处理中的应用前景作出展望。
关键词(KeyWords): 分数傅立叶变换;光学图像处理;图像加密;图像复原;边缘提取
基金项目(Foundation):
作者(Author): 邹裕越;谭立英;
Email:
DOI:
参考文献(References):
- [1]Lohmann A W. Image Rotation, Wigner Rotation, and the Fractional Fourier Transforms. J. Opt. Soc.Amer. A. 1993, 10(10): 2181-2186.
- [2]Lohmann A W, Soffer B H. Relationships between the Radon-Wigner and Fractional Fourier Tranforms. J. Opt. Sco. AM. A.. 1994, 111(61): 1798-1801.
- [3]Condon E U. Immersion of the Fourier Transform in a Continuous Group of Functional Transformation. Acad. Sci. USA,1937, 23:158-164.
- [4]Namias V. "The Fractional order Fourier Transform and its Application to Quantum Mechanics," J.Inst.Math. Appl., 1980, 25: 241- 265.
- [5]McBride A C and Kerr F H. On Namias's Fractional Fourier Transforms. IMA J. Appl. Math., 1987, 39: 159-175.
- [6]Mendlovic D and Ozaktas H M. Fractional Fourier trans- form and their optical implementation-I. J. Opt. Soc. Amer. A, 1993, 10(9): 1875- 1881.
- [7]Ozaktas H M and Mendlovic D. Fractional Fourier trans- form and their optical implementation-II. J. Opt. Soc. Amer. A. 1993, 10(12): 2522-2531.
- [8]Mendlovic D, Ozaktas H M, Lohmann A W. Self Fourier Transforms and Fractional Fourier Transforms. Opt Comm.. 1994, 105:36-38.
- [9]Almeida L. B. the fractional Fourier transform and time- frequency representations. IEEE Trans. Signal Processing, 1994, 42: 3084-3091.
- [10]Kutay M A, Ozaktas H M, Arikan O, Atl. Optimal Filtering in Fractional Fourier Domains. IEEE Trans. Signal Processing. 1997, 45(5): 1129-1143.
- [11] Alieva T, Lopez V, Lopez F A, All. The Fractional Fourier Transforms in Optical Propagation Problems. J.Mod.Opt.., 1994, 41(5): 1037-1044.
- [12]Dorsch R G, Lohmann A W. Fractional Fourier Transforms Used for a Lensdesign Problems. Appl.Opt.. 1995, 34(20): 4111-4112.
- [13]L M Bematdo, D D Soares. Fractional Fourier Trans- forms and Optical Systems. Opt. Comm.., 1994, 110: 517-522.
- [14]S G Shin, S I Jin, S Y Shin, and S Y Lee, "Optical neural network using fractional Fourier transform, log-likelihood, and parallelism" Opt. Commun., 1998, 153: 218-222.
- [15]Lohmann A W, Mendlovic D. Fractional Fourier Transforms: Photonic Implementation. Appl. Opt.. 1994, 33(32): 7661-7664.
- [16]Shamir J, Chen N. Root and Power Transformations in Optics. J. Opt. Sco. AM.A. 1995, 12(11): 2415-2423.
- [17]Martone M M. A Multicarrier System Based on the frac - tional Fourier trans - form for Time -Frequency -Selective Channels. IEEE Trans. Comm. , 2001, 49(6): 1011-1020.
- [18]Pei S C, Yeh M M, Tseng C C. Discrete fractional Fourier transform based on orthogonal projections. IEEE Trans. Signal Processing, 1999, 47 (5): 1335-1348.
- [19]Ozaktas H M, endlovicD M. Fractional Fourier Optics. J. Opt. Sco. AM.A. 1995, 12(4): 743-751.
- [20]Zhu B H, Liu S T, Ran Q W. Optical image encryption based on multifrac- tional Fourier transforms. Optics letters. 2000, 25 (16): 1159- 1161.
- [21]Liu S T, Zhu B H. Optical image encryption based on the generalized fractional convolution operation. Opt. Commun. 2001, 195: 371-381.
- [22]Philippe Refregier,Bahram Javidi. Optical image encryption based on input plane and Fourier plane random encoding [J],Opt Lett,1995,20(7): 767-769.
- [23]Bahram Javidi.Takanori Nomura. Secure information by use of digital holography[J].Opt Lett, 2000, 25(1): 28-30.
- [24]Hennelly B,Sheridan J T. Optical image encryption by random shifting in fractional Fourier domains[J].Opt Lett,2OO3, 28(4): 269-271.
- [25]Zhengjun Liu, Haifa Zhao, Shutian Liu. Adiscrete fractional random transform. Opt. Commun. 2005, 255: 357-365.
- [26]于立,朱邦和,刘树田.用于光学图像加密的分数傅立叶变换双相位编码.光子学报.2001,30:904-907.
- [27]于斌,彭翔.基于级联相位恢复算法的光学图像加密.光学学报.2005,25:881-884.
- [28]Kutay M A, Ozaktas H M. Optimal Image Restoration with the Fractional Fourier Transform. J. Opt. Sco. AM.A. 1998, 15: 825-834.
- [29] Igor Djurovic, Srdjan Stankovic and Ioannis Pitas, Digital watermarking in the fractional Fourier transformation domain. Journal of Network and Computer Applications. 2001, 24: 167 - 173.